Large-Scale Chromatin Unfolding and Remodeling Induced by VP16 Acidic Activation Domain
نویسندگان
چکیده
Analysis of the relationship between transcriptional activators and chromatin organization has focused largely on lower levels of chromatin structure. Here we describe striking remodeling of large-scale chromatin structure induced by a strong transcriptional activator. A VP16-lac repressor fusion protein targeted the VP16 acidic activation domain to chromosome regions containing lac operator repeats. Targeting was accompanied by increased transcription, localized histone hyperacetylation, and recruitment of at least three different histone acetyltransferases. Observed effects on large-scale chromatin structure included unfolding of a 90-Mbp heterochromatic chromosome arm into an extended 25-40-micrometers chromonema fiber, remodeling of this fiber into a novel subnuclear domain, and propagation of large-scale chromatin unfolding over hundreds of kilobase pairs. These changes in large-scale chromatin structure occurred even with inhibition of ongoing transcription by alpha-amanitin. Our results suggest a functional link between recruitment of the transcriptional machinery and changes in large-scale chromatin structure. Based on the observed long-range propagation of changes in large-scale chromatin structure, we suggest a possible rationale for the observed clustering of housekeeping genes within Mbp-sized chromosome bands.
منابع مشابه
Sequential Recruitment of HAT and SWI/SNF Components to Condensed Chromatin by VP16
Eukaryotic transcription initiation requires the complex dynamics of hundreds of proteins, many of which are found in large multisubunit complexes. Recent experiments have suggested stepwise recruitment of preassembled complexes, including chromatin remodeling, general transcription factor, mediator, and polymerase complexes, in which the actual order of recruitment may vary for different promo...
متن کاملAutomated microscopy identifies estrogen receptor subdomains with large-scale chromatin structure unfolding activity.
BACKGROUND Recently, several transcription factors were found to possess large-scale chromatin unfolding activity; these include the VP16 acidic activation domain, BRCA1, E2F1, p53, and the glucocorticoid and estrogen steroid receptors. In these studies, proteins were fluorescently labeled and targeted to a multimerized array of DNA sequences in mammalian cultured cells, and changes in the appe...
متن کاملAlteration of large-scale chromatin structure by estrogen receptor.
The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, thr...
متن کاملCommon effects of acidic activators on large-scale chromatin structure and transcription.
Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization syst...
متن کاملLoss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells.
Human HCF-1 is a large, highly conserved, and abundant nuclear protein that plays an important but unknown role in cell proliferation. It also plays a role in activation of herpes simplex virus immediate-early gene transcription by the viral regulatory protein VP16. A single proline-to-serine substitution in the HCF-1 VP16 interaction domain causes a temperature-induced arrest of cell prolifera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 145 شماره
صفحات -
تاریخ انتشار 1999